Extensions 1→N→G→Q→1 with N=C6 and Q=C22×S3

Direct product G=N×Q with N=C6 and Q=C22×S3
dρLabelID
S3×C22×C648S3xC2^2xC6144,195

Semidirect products G=N:Q with N=C6 and Q=C22×S3
extensionφ:Q→Aut NdρLabelID
C61(C22×S3) = C22×S32φ: C22×S3/D6C2 ⊆ Aut C624C6:1(C2^2xS3)144,192
C62(C22×S3) = C23×C3⋊S3φ: C22×S3/C2×C6C2 ⊆ Aut C672C6:2(C2^2xS3)144,196

Non-split extensions G=N.Q with N=C6 and Q=C22×S3
extensionφ:Q→Aut NdρLabelID
C6.1(C22×S3) = S3×Dic6φ: C22×S3/D6C2 ⊆ Aut C6484-C6.1(C2^2xS3)144,137
C6.2(C22×S3) = D125S3φ: C22×S3/D6C2 ⊆ Aut C6484-C6.2(C2^2xS3)144,138
C6.3(C22×S3) = D12⋊S3φ: C22×S3/D6C2 ⊆ Aut C6244C6.3(C2^2xS3)144,139
C6.4(C22×S3) = Dic3.D6φ: C22×S3/D6C2 ⊆ Aut C6244C6.4(C2^2xS3)144,140
C6.5(C22×S3) = D6.D6φ: C22×S3/D6C2 ⊆ Aut C6244C6.5(C2^2xS3)144,141
C6.6(C22×S3) = D6.6D6φ: C22×S3/D6C2 ⊆ Aut C6244+C6.6(C2^2xS3)144,142
C6.7(C22×S3) = C4×S32φ: C22×S3/D6C2 ⊆ Aut C6244C6.7(C2^2xS3)144,143
C6.8(C22×S3) = S3×D12φ: C22×S3/D6C2 ⊆ Aut C6244+C6.8(C2^2xS3)144,144
C6.9(C22×S3) = D6⋊D6φ: C22×S3/D6C2 ⊆ Aut C6244C6.9(C2^2xS3)144,145
C6.10(C22×S3) = C2×S3×Dic3φ: C22×S3/D6C2 ⊆ Aut C648C6.10(C2^2xS3)144,146
C6.11(C22×S3) = D6.3D6φ: C22×S3/D6C2 ⊆ Aut C6244C6.11(C2^2xS3)144,147
C6.12(C22×S3) = D6.4D6φ: C22×S3/D6C2 ⊆ Aut C6244-C6.12(C2^2xS3)144,148
C6.13(C22×S3) = C2×C6.D6φ: C22×S3/D6C2 ⊆ Aut C624C6.13(C2^2xS3)144,149
C6.14(C22×S3) = C2×D6⋊S3φ: C22×S3/D6C2 ⊆ Aut C648C6.14(C2^2xS3)144,150
C6.15(C22×S3) = C2×C3⋊D12φ: C22×S3/D6C2 ⊆ Aut C624C6.15(C2^2xS3)144,151
C6.16(C22×S3) = C2×C322Q8φ: C22×S3/D6C2 ⊆ Aut C648C6.16(C2^2xS3)144,152
C6.17(C22×S3) = S3×C3⋊D4φ: C22×S3/D6C2 ⊆ Aut C6244C6.17(C2^2xS3)144,153
C6.18(C22×S3) = Dic3⋊D6φ: C22×S3/D6C2 ⊆ Aut C6124+C6.18(C2^2xS3)144,154
C6.19(C22×S3) = C2×Dic18φ: C22×S3/C2×C6C2 ⊆ Aut C6144C6.19(C2^2xS3)144,37
C6.20(C22×S3) = C2×C4×D9φ: C22×S3/C2×C6C2 ⊆ Aut C672C6.20(C2^2xS3)144,38
C6.21(C22×S3) = C2×D36φ: C22×S3/C2×C6C2 ⊆ Aut C672C6.21(C2^2xS3)144,39
C6.22(C22×S3) = D365C2φ: C22×S3/C2×C6C2 ⊆ Aut C6722C6.22(C2^2xS3)144,40
C6.23(C22×S3) = D4×D9φ: C22×S3/C2×C6C2 ⊆ Aut C6364+C6.23(C2^2xS3)144,41
C6.24(C22×S3) = D42D9φ: C22×S3/C2×C6C2 ⊆ Aut C6724-C6.24(C2^2xS3)144,42
C6.25(C22×S3) = Q8×D9φ: C22×S3/C2×C6C2 ⊆ Aut C6724-C6.25(C2^2xS3)144,43
C6.26(C22×S3) = Q83D9φ: C22×S3/C2×C6C2 ⊆ Aut C6724+C6.26(C2^2xS3)144,44
C6.27(C22×S3) = C22×Dic9φ: C22×S3/C2×C6C2 ⊆ Aut C6144C6.27(C2^2xS3)144,45
C6.28(C22×S3) = C2×C9⋊D4φ: C22×S3/C2×C6C2 ⊆ Aut C672C6.28(C2^2xS3)144,46
C6.29(C22×S3) = C23×D9φ: C22×S3/C2×C6C2 ⊆ Aut C672C6.29(C2^2xS3)144,112
C6.30(C22×S3) = C2×C324Q8φ: C22×S3/C2×C6C2 ⊆ Aut C6144C6.30(C2^2xS3)144,168
C6.31(C22×S3) = C2×C4×C3⋊S3φ: C22×S3/C2×C6C2 ⊆ Aut C672C6.31(C2^2xS3)144,169
C6.32(C22×S3) = C2×C12⋊S3φ: C22×S3/C2×C6C2 ⊆ Aut C672C6.32(C2^2xS3)144,170
C6.33(C22×S3) = C12.59D6φ: C22×S3/C2×C6C2 ⊆ Aut C672C6.33(C2^2xS3)144,171
C6.34(C22×S3) = D4×C3⋊S3φ: C22×S3/C2×C6C2 ⊆ Aut C636C6.34(C2^2xS3)144,172
C6.35(C22×S3) = C12.D6φ: C22×S3/C2×C6C2 ⊆ Aut C672C6.35(C2^2xS3)144,173
C6.36(C22×S3) = Q8×C3⋊S3φ: C22×S3/C2×C6C2 ⊆ Aut C672C6.36(C2^2xS3)144,174
C6.37(C22×S3) = C12.26D6φ: C22×S3/C2×C6C2 ⊆ Aut C672C6.37(C2^2xS3)144,175
C6.38(C22×S3) = C22×C3⋊Dic3φ: C22×S3/C2×C6C2 ⊆ Aut C6144C6.38(C2^2xS3)144,176
C6.39(C22×S3) = C2×C327D4φ: C22×S3/C2×C6C2 ⊆ Aut C672C6.39(C2^2xS3)144,177
C6.40(C22×S3) = C6×Dic6central extension (φ=1)48C6.40(C2^2xS3)144,158
C6.41(C22×S3) = S3×C2×C12central extension (φ=1)48C6.41(C2^2xS3)144,159
C6.42(C22×S3) = C6×D12central extension (φ=1)48C6.42(C2^2xS3)144,160
C6.43(C22×S3) = C3×C4○D12central extension (φ=1)242C6.43(C2^2xS3)144,161
C6.44(C22×S3) = C3×S3×D4central extension (φ=1)244C6.44(C2^2xS3)144,162
C6.45(C22×S3) = C3×D42S3central extension (φ=1)244C6.45(C2^2xS3)144,163
C6.46(C22×S3) = C3×S3×Q8central extension (φ=1)484C6.46(C2^2xS3)144,164
C6.47(C22×S3) = C3×Q83S3central extension (φ=1)484C6.47(C2^2xS3)144,165
C6.48(C22×S3) = Dic3×C2×C6central extension (φ=1)48C6.48(C2^2xS3)144,166
C6.49(C22×S3) = C6×C3⋊D4central extension (φ=1)24C6.49(C2^2xS3)144,167

׿
×
𝔽