extension | φ:Q→Aut N | d | ρ | Label | ID |
C6.1(C22×S3) = S3×Dic6 | φ: C22×S3/D6 → C2 ⊆ Aut C6 | 48 | 4- | C6.1(C2^2xS3) | 144,137 |
C6.2(C22×S3) = D12⋊5S3 | φ: C22×S3/D6 → C2 ⊆ Aut C6 | 48 | 4- | C6.2(C2^2xS3) | 144,138 |
C6.3(C22×S3) = D12⋊S3 | φ: C22×S3/D6 → C2 ⊆ Aut C6 | 24 | 4 | C6.3(C2^2xS3) | 144,139 |
C6.4(C22×S3) = Dic3.D6 | φ: C22×S3/D6 → C2 ⊆ Aut C6 | 24 | 4 | C6.4(C2^2xS3) | 144,140 |
C6.5(C22×S3) = D6.D6 | φ: C22×S3/D6 → C2 ⊆ Aut C6 | 24 | 4 | C6.5(C2^2xS3) | 144,141 |
C6.6(C22×S3) = D6.6D6 | φ: C22×S3/D6 → C2 ⊆ Aut C6 | 24 | 4+ | C6.6(C2^2xS3) | 144,142 |
C6.7(C22×S3) = C4×S32 | φ: C22×S3/D6 → C2 ⊆ Aut C6 | 24 | 4 | C6.7(C2^2xS3) | 144,143 |
C6.8(C22×S3) = S3×D12 | φ: C22×S3/D6 → C2 ⊆ Aut C6 | 24 | 4+ | C6.8(C2^2xS3) | 144,144 |
C6.9(C22×S3) = D6⋊D6 | φ: C22×S3/D6 → C2 ⊆ Aut C6 | 24 | 4 | C6.9(C2^2xS3) | 144,145 |
C6.10(C22×S3) = C2×S3×Dic3 | φ: C22×S3/D6 → C2 ⊆ Aut C6 | 48 | | C6.10(C2^2xS3) | 144,146 |
C6.11(C22×S3) = D6.3D6 | φ: C22×S3/D6 → C2 ⊆ Aut C6 | 24 | 4 | C6.11(C2^2xS3) | 144,147 |
C6.12(C22×S3) = D6.4D6 | φ: C22×S3/D6 → C2 ⊆ Aut C6 | 24 | 4- | C6.12(C2^2xS3) | 144,148 |
C6.13(C22×S3) = C2×C6.D6 | φ: C22×S3/D6 → C2 ⊆ Aut C6 | 24 | | C6.13(C2^2xS3) | 144,149 |
C6.14(C22×S3) = C2×D6⋊S3 | φ: C22×S3/D6 → C2 ⊆ Aut C6 | 48 | | C6.14(C2^2xS3) | 144,150 |
C6.15(C22×S3) = C2×C3⋊D12 | φ: C22×S3/D6 → C2 ⊆ Aut C6 | 24 | | C6.15(C2^2xS3) | 144,151 |
C6.16(C22×S3) = C2×C32⋊2Q8 | φ: C22×S3/D6 → C2 ⊆ Aut C6 | 48 | | C6.16(C2^2xS3) | 144,152 |
C6.17(C22×S3) = S3×C3⋊D4 | φ: C22×S3/D6 → C2 ⊆ Aut C6 | 24 | 4 | C6.17(C2^2xS3) | 144,153 |
C6.18(C22×S3) = Dic3⋊D6 | φ: C22×S3/D6 → C2 ⊆ Aut C6 | 12 | 4+ | C6.18(C2^2xS3) | 144,154 |
C6.19(C22×S3) = C2×Dic18 | φ: C22×S3/C2×C6 → C2 ⊆ Aut C6 | 144 | | C6.19(C2^2xS3) | 144,37 |
C6.20(C22×S3) = C2×C4×D9 | φ: C22×S3/C2×C6 → C2 ⊆ Aut C6 | 72 | | C6.20(C2^2xS3) | 144,38 |
C6.21(C22×S3) = C2×D36 | φ: C22×S3/C2×C6 → C2 ⊆ Aut C6 | 72 | | C6.21(C2^2xS3) | 144,39 |
C6.22(C22×S3) = D36⋊5C2 | φ: C22×S3/C2×C6 → C2 ⊆ Aut C6 | 72 | 2 | C6.22(C2^2xS3) | 144,40 |
C6.23(C22×S3) = D4×D9 | φ: C22×S3/C2×C6 → C2 ⊆ Aut C6 | 36 | 4+ | C6.23(C2^2xS3) | 144,41 |
C6.24(C22×S3) = D4⋊2D9 | φ: C22×S3/C2×C6 → C2 ⊆ Aut C6 | 72 | 4- | C6.24(C2^2xS3) | 144,42 |
C6.25(C22×S3) = Q8×D9 | φ: C22×S3/C2×C6 → C2 ⊆ Aut C6 | 72 | 4- | C6.25(C2^2xS3) | 144,43 |
C6.26(C22×S3) = Q8⋊3D9 | φ: C22×S3/C2×C6 → C2 ⊆ Aut C6 | 72 | 4+ | C6.26(C2^2xS3) | 144,44 |
C6.27(C22×S3) = C22×Dic9 | φ: C22×S3/C2×C6 → C2 ⊆ Aut C6 | 144 | | C6.27(C2^2xS3) | 144,45 |
C6.28(C22×S3) = C2×C9⋊D4 | φ: C22×S3/C2×C6 → C2 ⊆ Aut C6 | 72 | | C6.28(C2^2xS3) | 144,46 |
C6.29(C22×S3) = C23×D9 | φ: C22×S3/C2×C6 → C2 ⊆ Aut C6 | 72 | | C6.29(C2^2xS3) | 144,112 |
C6.30(C22×S3) = C2×C32⋊4Q8 | φ: C22×S3/C2×C6 → C2 ⊆ Aut C6 | 144 | | C6.30(C2^2xS3) | 144,168 |
C6.31(C22×S3) = C2×C4×C3⋊S3 | φ: C22×S3/C2×C6 → C2 ⊆ Aut C6 | 72 | | C6.31(C2^2xS3) | 144,169 |
C6.32(C22×S3) = C2×C12⋊S3 | φ: C22×S3/C2×C6 → C2 ⊆ Aut C6 | 72 | | C6.32(C2^2xS3) | 144,170 |
C6.33(C22×S3) = C12.59D6 | φ: C22×S3/C2×C6 → C2 ⊆ Aut C6 | 72 | | C6.33(C2^2xS3) | 144,171 |
C6.34(C22×S3) = D4×C3⋊S3 | φ: C22×S3/C2×C6 → C2 ⊆ Aut C6 | 36 | | C6.34(C2^2xS3) | 144,172 |
C6.35(C22×S3) = C12.D6 | φ: C22×S3/C2×C6 → C2 ⊆ Aut C6 | 72 | | C6.35(C2^2xS3) | 144,173 |
C6.36(C22×S3) = Q8×C3⋊S3 | φ: C22×S3/C2×C6 → C2 ⊆ Aut C6 | 72 | | C6.36(C2^2xS3) | 144,174 |
C6.37(C22×S3) = C12.26D6 | φ: C22×S3/C2×C6 → C2 ⊆ Aut C6 | 72 | | C6.37(C2^2xS3) | 144,175 |
C6.38(C22×S3) = C22×C3⋊Dic3 | φ: C22×S3/C2×C6 → C2 ⊆ Aut C6 | 144 | | C6.38(C2^2xS3) | 144,176 |
C6.39(C22×S3) = C2×C32⋊7D4 | φ: C22×S3/C2×C6 → C2 ⊆ Aut C6 | 72 | | C6.39(C2^2xS3) | 144,177 |
C6.40(C22×S3) = C6×Dic6 | central extension (φ=1) | 48 | | C6.40(C2^2xS3) | 144,158 |
C6.41(C22×S3) = S3×C2×C12 | central extension (φ=1) | 48 | | C6.41(C2^2xS3) | 144,159 |
C6.42(C22×S3) = C6×D12 | central extension (φ=1) | 48 | | C6.42(C2^2xS3) | 144,160 |
C6.43(C22×S3) = C3×C4○D12 | central extension (φ=1) | 24 | 2 | C6.43(C2^2xS3) | 144,161 |
C6.44(C22×S3) = C3×S3×D4 | central extension (φ=1) | 24 | 4 | C6.44(C2^2xS3) | 144,162 |
C6.45(C22×S3) = C3×D4⋊2S3 | central extension (φ=1) | 24 | 4 | C6.45(C2^2xS3) | 144,163 |
C6.46(C22×S3) = C3×S3×Q8 | central extension (φ=1) | 48 | 4 | C6.46(C2^2xS3) | 144,164 |
C6.47(C22×S3) = C3×Q8⋊3S3 | central extension (φ=1) | 48 | 4 | C6.47(C2^2xS3) | 144,165 |
C6.48(C22×S3) = Dic3×C2×C6 | central extension (φ=1) | 48 | | C6.48(C2^2xS3) | 144,166 |
C6.49(C22×S3) = C6×C3⋊D4 | central extension (φ=1) | 24 | | C6.49(C2^2xS3) | 144,167 |